Cluster-NFS: Simplifying Linux Clusters

Gregory R. Warnes, Ph.C.

Fred Hutchinson Cancer Research Center

May 11, 1999

The cNFS Mascot, Henry the Hydra

5. Cluster Recipe 3. The Tools 6. Ideas and Future Plans 4. MOSIX + Cluster-NFS in Action: The BioHive Cluster 2. What Makes Clusters Hard? 1. Why Linux Clusters? High Performance + Low Cost MOSIX: Easier for Users Users: Distributing Tasks Cluster-NFS: Easier for Admins Admins: Maintenance! Outline

Why Use Linux Clusters?

1. High performance

- Close to 1:1 speedup (modulo CPU speed differences) for our parallel application.
- Perfect 1:1 speedup for batches of independent simulations

2. Low Cost

- Diskless Dual Celeron-500: \$800/ea
- Diskless Athlon-850: \$1000/ea
- 3. Relatively Easy to Build and Maintain

Why Linux Clusters? High performance

Why Linux Clusters? High performance

Speedup Relative to 1 CPU

Why Linux Clusters? Low Cost

HARD DRIVES
N O R TH W 3 S TI

Rising High Above the Competition*

Home

News Releases

Support

Company Info Contact

Built Exactly How You Want It! 1-888-220-8964

Departments: Hard Drives View My Order! Build Your Own

Components: Home Computers
Business Computers Notebooks

CPUs CD/DVD-ROMs External HDD Digital Cameras Controllers Enclosures

Cases

Auctions

CD-Recordable Drives

Media Memory Keyboards Floppy Drives

Mpbs

Monitors - Flat Panel Monitors 14" - 17" Monitors 19"+ Mice Modems

Networking Hubs Network Cards (NIC's) Motherboards

PDA'S Printers Power Protection

Operating Systems

Media Scanners Removable Mass Services

Speakers Sound Cards

Software

Tape Backup DevicesVideo Cards

Build A Computer

Description Aopen SiS 6326 4mb AGP 1.44 Floppy Intel Celeron 500 PPGA 66MHz Socket 370 Qty = 2 System Assembly KME Jumbo-Mini Tower ATX 256mb PC-133 SDRAM Qty = 1 Abit BP6 ATX 100MHz Dual Socket-370 Motherboard \$29.00 \$14.00 Price \$42.00 \$147.00 \$238.00 \$27.00 \$239.00

3COM Fast Etherlink XL 3C905B-TXNM PCI 10/100 \$53.00

TOTAL \$789.00

Add To Order Return to Build A Computer

[Build A Computer] [Home Computers] [Business Computers] [Laptops] [Hard Drives] [Components] [View my basket] [Service] [About HDNW] [News] [Home] ©1997-2000 Hard Drives Northwest, Inc. All rights reserved.

©1997-2000 Hard Drives Northwest, Inc. All rights reserved

6

What Makes Clusters Hard?

Setup - Administrator

- Setting up a 4 node cluster by hand is pretty easy.
- Setting up a 16 node cluster by hand is mind-numbing and prone to errors.
- 2. Maintenance Administrator
- Ever tried to update a package on every node in the cluster?
- How about 3 configuration files?
- How do you know if you missed one machine?
- 3. Running Jobs Users
- Running a parallel program or a set of sequential programs requires that the users figure out what hosts are available and manually assign tasks to
- Users usually don't want to see this much detail.

The Tools: MOSIX

Description: MOSIX is an enhancement to the Linux kernel that provides processes among the nodes to take best advantage of the available adaptive (on-line) load-balancing and memory ushering between x86 Linux resources machines. It uses preemptive process migration to assign and reassign the

Translation: MOSIX moves processes around the cluster to balance the load, using faster machines first.

Source: Amnon Barak, CS Department of the Hebrew University of Jerusalem

URL: http://www.mosix.cs.huji.ac.il

The Tools: Cluster-NFS (cNFS)

Description: cNFS is a patch to the standard Universal-NFS server (uNFS) server code that "parses" file requests to determine an appropriate match on the

existence of one of the following files, returning the first match: Whenever a client requests the file filename, the server check for the

filename\$\$UID=xxxx\$\$ user's id
filename\$\$GID=xxxx\$\$
filename\$\$HOSTNAME=ssss\$\$
filename\$\$IP=xxx.xxx.xxx\$\$
client ip number
filename\$\$CLIENT\$\$
filename

Example: When client machine bee3 asks for file /etc/hostname it gets the Contents of /etc/hostname\$\$HOST=bee3\$\$

Source: Gregory Warnes, Fred Hutchinson Cancer Research Center

URL: http://queenbee.fhcrc.org/ClusterNFS/

MOSIX + ClusterNFS in Action: the BioHive Cluster Dual Celeron–500 Abit BP6 MB 384MB RAM 3.25" Floppy Drive 24GB IDE Quantum Fireball 2x 3Com 3C905B 10/100 ethernet Viceo Card QueenBee http://queenbee.fhcrc.org 40 Port 10/100 Switch 256MB RAM 3.25" Floppy Drive 3Com 3C905B 10/100 ethernet Viceo Card Dual Celeron-500 Abit BP6 MB Bee7 Bee2 Bee8 Bee3 3.25" Floppy Drive Intel EtherExpressPro 10/100 ethernet Video Card Dual Pentiu,-II 300 256 or 384MB RAM Bee4 Bee5 Bee6

Making Clusters Easy: MOSIX + Cluster-NFS

- 1. Setup Administrator
- Setup server
- Compile rootNFS kernel. Make floppies.
- Plug in switch
- Plug in nodes. Insert Floppy.
- Boot.
- 2. Maintenance Administrator
- Changes made to server immediately take effect on all clients.
- Adding a node requires changing or copying 8 files and making a bootdisk.
- 3. Running Jobs Users
- Users log into a "master" node, MOSIX distributes tasks.

Making Clusters Easy for Users: MOSIX

that transparently migrates tasks between machines MOSIX (http://www.mosix.cs.huji.ac.il) is a dynamic load-balancing system

- 1. Users log into "master" node
- 2. Jobs started on the master node automagically migrate to fastest / least loaded machine.
- Parallel jobs need not specify nodes
- Sequential jobs started as if on SMP
- 3. Job Control (ps, top, kill) occurs as if whole cluster is one system

Users never need to know details of cluster configuration.

12

Diskless Servers: Traditional Method

Server:

- BOOTP server
- NFS server
- Separate root directory for each client

Client:

- BOOTP to obtain IP
- TFTP or boot floppy to load kernel
- rootNFS to load root file system

Diskless Servers: Traditional Method

This method requires a separate root directory structure for each node.

Hard to Set Up

- Lots of directories with slightly different contents.
- Even with symlinks this gets messy fast.

Difficult to Maintain

- Changes must be propogated to each directory.
- No easy way to see what differs between directories.

Server:

- BOOTP server
- Cluster-NFS server
- Single root directory for server and clients

Client:

- BOOTP to obtain IP
- TFTP or boot floppy to load kernel
- rootNFS to load root file system

5

6

Diskless Servers: Cluster-NFS Method

Easy to set up

Just copy/create the files that need to be different.

- Easy to maintain
- Changes to shared files are global.
- Easy to make customizations.
- Easy to look for customizations: find / -name "*\\$\\$*\\$\\$"
- Easy to add nodes, add node to 4 server files and create 7 machine-specific files.

Cluster-NFS Recipe

On the Server

- 1. Install and configure Debian Linux
- 2. Install Cluster-NFS
- 3. Download and Compile MOSIX and Kernel, enabling BOOTP and RootNFS.
- 4. Copy the Kernel to Floppies
- 5. Add entries for each client to
- /etc/hosts,
- /etc/mosix.map,
- /etc/bootptab,
- /etc/exports, and
- /etc/hosts.allow.
- 6. Create files that are the same for all clients, filename\$\$CLIENT\$\$.

20

Plans and Ideas

Need to write this up as a paper.

Wanted: Volonteer to do the writing in exchange for co-authorship.

Instant Cluster:

Pile of Windows Desktops

Pile of Boot Floppies

1 Linux Server running ClusterNFS

Instant Linux Cluster

No configuration on the client!

Simplifying Linux Clusters

Plans and Ideas

- Use of DHCP instead of BOOTP?
- Auto-configuration: Unrecognized MAC address causes server to
- 1. Assign a new IP number and hostname
- 2. Add appropriate entry to /etc/bootptab
- 3. Create new machine specific files using template scripts, say filename\$\$TEMPLATE-SCRIPT\$\$,
- \ \ \ \

22